
In probability theory, the problem of coupon collectors describes the contest "collect all coupons and win". This asks the following question: Suppose there are urns of different coupons, from which the coupons are collected, the possibility is the same, with replacement. What is the probability that more than t a sample experiment is needed to collect all the coupons? An alternative statement is: Given a coupon, how many coupons would you expect you to draw with a replacement before withdrawing each coupon at least once? The mathematical analysis of the problem reveals that the number of expected experiments required grows as log                (          n        )        )               {\ displaystyle \ Theta (n \ log (n))}   . For example, when n Ã, = Ã, 50 it takes about 225 experiments on average to collect all 50 coupons.
Video Coupon collector's problem
Solution
Calculate expectations
Di sini H n adalah nomor harmonik n . Menggunakan asimtotik dari bilangan harmonik, kita memperoleh:
- log                 n                 ?         n                                       1             2                                   O         (         1                   /                 n         )         ,               {\ displaystyle \ operatorname {E} (T) = n \ cdot H_ {n} = n \ log n \ gamma n {\ frac {1} {2}} O (1/n),}  ÂÂ
di mana adalah konstanta Euler-Mascheroni.
Sekarang seseorang dapat menggunakan ketidaksetaraan Markov untuk mengikat probabilitas yang diinginkan:
-
Menghitung varians
sejak (lihat masalah Basel).
Sekarang seseorang dapat menggunakan ketidaksetaraan Chebyshev untuk mengikat probabilitas yang diinginkan:
-
Taksiran ekor
Batas atas yang berbeda dapat berasal dari pengamatan berikut. Biarkan menunjukkan peristiwa bahwa -tidak dipilih di uji coba. Kemudian:
-
Source of the article : Wikipedia