Kamis, 05 Juli 2018

Sponsored Links

Coupon Collector's Problem Part 1 - YouTube
src: i.ytimg.com

In probability theory, the problem of coupon collectors describes the contest "collect all coupons and win". This asks the following question: Suppose there are urns of different coupons, from which the coupons are collected, the possibility is the same, with replacement. What is the probability that more than t a sample experiment is needed to collect all the coupons? An alternative statement is: Given a coupon, how many coupons would you expect you to draw with a replacement before withdrawing each coupon at least once? The mathematical analysis of the problem reveals that the number of expected experiments required grows as              ?        (          n            log                (          n        )        )               {\ displaystyle \ Theta (n \ log (n))}   . For example, when n Ã, = Ã, 50 it takes about 225 experiments on average to collect all 50 coupons.


Video Coupon collector's problem



Solution

Calculate expectations

Di sini H n adalah nomor harmonik n . Menggunakan asimtotik dari bilangan harmonik, kita memperoleh:

                        E                   (          T         )          =          n         ?                     H                         n                              =          n          log                   n                  ?          n                                           1              2                                       O          (          1                    /                   n         )         ,                  {\ displaystyle \ operatorname {E} (T) = n \ cdot H_ {n} = n \ log n \ gamma n {\ frac {1} {2}} O (1/n),}   

di mana                        ?         ?          0,5772156649                  {\ displaystyle \ gamma \ approx 0.5772156649}    adalah konstanta Euler-Mascheroni.

Sekarang seseorang dapat menggunakan ketidaksetaraan Markov untuk mengikat probabilitas yang diinginkan:

                        P                   (          T         > =          c          n                     H                         n                             )          <=                                  1              c                             .                  {\ displaystyle \ operatorname {P} (T \ geq cnH_ {n}) \ leq {\ frac {1} {c}}.}   

Menghitung varians

sejak                                                               ?                                 2                                          6                              =                                  1                             1                                 2                                                                                           1                             2                                 2                                                                  ?                                           1                             n                                 2                                                                  ?                  {\ displaystyle {\ frac {\ pi ^ {2}} {6}} = {\ frac {1} {1 ^ {2}}} {\ frac { 1} {2 ^ {2}}} \ cdots {\ frac {1} {n ^ {2}}} \ cdots}    (lihat masalah Basel).

Sekarang seseorang dapat menggunakan ketidaksetaraan Chebyshev untuk mengikat probabilitas yang diinginkan:

                        P                              (                                        |                           T              -              n                             H                                 n                                                         |                          > =              c              n                      )                   <=                                                ?                                 2                                                         6                                 c                                     2                                                                          .                  {\ displaystyle \ operatorname {P} \ left (| T-nH_ {n} | \ geq cn \ right) \ leq {\ frac {\ pi ^ {2}} {6c ^ {2}}}.}   

Taksiran ekor

Batas atas yang berbeda dapat berasal dari pengamatan berikut. Biarkan                                                 Z                                    saya                                    r                                      {\ displaystyle {Z} _ {i} ^ {r}}    menunjukkan peristiwa bahwa                         saya                  {\ displaystyle i}   Kupon -tidak dipilih di                         r                  {\ displaystyle r}    uji coba. Kemudian:

                                                                                P                                     [                                                                Z                                                                  saya                                                                  r                                                           ]                                   =                                                          (                                             1                        -                                                                            1                            n                                                                                          )                                                            r                                                      <=                                     e                                         -                      r                                            /                                           n                                                                                                      {\ displaystyle {\ begin {aligned} P \ left [{Z} _ {i} ^ {r} \ right] = \ kiri (1 - {\ frac {1 } {n}} \ right) ^ {r} \ leq e ^ {- r/n} \ end {aligned}}}   

Source of the article : Wikipedia

Comments
0 Comments